Computational Statistics
Beschrijving
Titel: Computational Statistics
Schrijver: Jennifer A. Hoeting
Bindingswijze: Hardcover
EAN: 9780470533314
Conditie: Goed
Let op: Hieronder staat een algemene beschrijving van hoe wij onze conditietypes classificeren. Als u een nauwkeuriger beeld wilt of specifieke vragen heeft, stuur ons dan een bericht en we kijken het graag voor u na.
Conditie-omschrijvingen:
- Als Nieuw: Nauwelijks gebruikssporen, bijna als nieuw.
- Goed: Kan lichte gebruikssporen vertonen, zoals wat verkleuring of een naam op de schutbladen, maar doorgaans geen onderstrepingen of aantekeningen in de tekst.
- Redelijk: Boek in redelijke staat. Kan gebruikssporen vertonen, zoals verkleuring, leesvouwen in de rug, onderstrepingen, aantekeningen, lichte vervuiling aan de randen, ezelsoren of een kromme rug.
- Nieuw: Boek is nieuw.
Beschrijving:
Retaining the general organization and style of its predecessor, this new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing and computational statistics.
A valuable new edition of the complete guide to modern statistical computing
Computational Statistics, Second Edition continues to serve as a comprehensive guide to the theory and practice of statistical computing. Like its predecessor, the new edition spans a broad range of modern and classic topics including optimization, integration, Monte Carlo methods, bootstrapping, density estimation and smoothing. Algorithms are explained both conceptually and by using step-by-step descriptions, and are illustrated with detailed examples and exercises.
Important features of this Second Edition include:
- Examples based on real-world applications from various fields including genetics, ecology, economics, network systems, biology, and medicine
- Explanations of how computational methods are important components of major statistical approaches such as Bayesian models, linear and generalized linear models, random effects models, survival models, and hidden Markov models
- Expanded coverage of Markov chain Monte Carlo methods
- New topics such as sequential sampling methods, particle filters, derivative free optimization, bootstrapping dependent data, and adaptive MCMC
- New exercises and examples that help readers develop the skills needed to apply computational methods to a broad array of statistical problems
- A companion website offering datasets and code in the R software package
Computational Statistics, Second Edition is perfect for advanced undergraduate or graduate courses in statistical computing and as a reference for practicing statisticians.
This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field:
- Optimization
- Integration and Simulation
- Bootstrapping
- Density Estimation and Smoothing
Within these sections,each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics such as adaptive MCMC and bootstrapping for correlated data. The book website now includes comprehensive R code for the entire book. There are extensive exercises, real examples, and helpful insights about how to use the methods in practice.